The sequence \textbf{A120733} in OEIS is "Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to \(n \)."

\textbf{Main result:}

\[A120733(n) \sim \frac{2^{\log(2)} - 2 \cdot n!}{(\log(2))^{2n+2}} \]

\textbf{Proof:}

In OEIS we have a formula

\[A120733(n) = \frac{1}{n!} \sum_{k=1}^{n} (-1)^{n-k} \cdot S_1(n,k) \cdot A000670(k)^2 \]

where \(S_1(n,k) \) are the Stirling numbers of the first kind and \(A000670 \) are Fubini numbers (number of ordered partitions of \(n \), the ordered Bell numbers)

The sequence \(A000670 \) has an exponential generating function

\[f(x) = \frac{1}{2 - e^x} \]

with a simple pole at \(r = \log(2) \) and the derivative is

\[f'(x) = \frac{e^x}{(2 - e^x)^2} \]

Asymptotic is then

\[A000670(n) \sim \frac{\text{residue}(f, r)}{r^{n+1}} \cdot n! = \frac{f(r)^2}{f'(r) \cdot r^{n+1}} \cdot n! = \frac{n!}{2 \cdot (\log(2))^{n+1}} \]

Now

\[A120733(n) = \frac{1}{n!} \cdot A000670(n)^2 \cdot \sum_{k=1}^{n} (-1)^{n-k} \cdot S_1(n,k) \cdot \left(\frac{A000670(k)}{A000670(n)} \right)^2 \]

The maximal term in the sum is at the position \(k = n \) (see a graph in the logarithmical scale)

\[\sum_{k=1}^{n} (-1)^{n-k} \cdot S_1(n,k) \cdot \left(\frac{A000670(k)}{A000670(n)} \right)^2 = 1 - S_1(n, n-1) \cdot \left(\frac{A000670(n-1)}{A000670(n)} \right)^2 + S_1(n, n-2) \cdot \left(\frac{A000670(n-2)}{A000670(n)} \right)^2 - \ldots \]

For fixed \(k \) we have (see H. W. Gould, formula 8.4):

\[(-1)^k \cdot S_1(n, n-k) \sim \frac{n^{2k}}{2^k k!} \]
Together
\[
\frac{A000670(n-k)}{A000670(n)} \sim \frac{(n-k)!}{n!} \cdot (\log(2))^k \sim \left(\frac{\log(2)}{n}\right)^k
\]

Contribution of all terms in the sum is
\[
(-1)^k \cdot S_i(n, n-k) \cdot \left(\frac{A000670(n-k)}{A000670(n)}\right)^2 \sim \frac{n^{2k}}{2^k \cdot k!} \cdot \left(\frac{\log(2)}{n}\right)^{2k} = \frac{(\log(2))^{2k}}{2^k \cdot k!}
\]

The final asymptotic is
\[
A120733(n) \sim \frac{1}{n!} \cdot \left(\frac{n!}{2 \cdot (\log(2))^{n+1}}\right)^2 \cdot e^{\frac{(\log(2))^2}{2}} = \frac{\log^2(2) - 2 \cdot n!}{(\log(2))^{2n+2}}
\]

Numerical verification, the ratio tends to 1:

![Numerical verification graph](image)

Richardson extrapolation, 10 steps, from 100 terms of the sequence. The convergence is very good.

![Richardson extrapolation graph](image)